top of page

Mandelbrot fractals in python


ree

Here, you can see the visualization of a Mandelbrot fractal with exponent 4.

import matplotlib.pyplot as plt
import numpy as np
import math

np.warnings.filterwarnings("ignore")

c = complex_matrix(-2, 2, -1.5, 1.5, pixel_density=512)

def complex_matrix(xmin, xmax, ymin, ymax, pixel_density):
    re = np.linspace(xmin, xmax, int((xmax - xmin) * pixel_density))
    im = np.linspace(ymin, ymax, int((ymax - ymin) * pixel_density))
    return re[np.newaxis, :] + im[:, np.newaxis] * 1j

def is_stable(c, e, num_iterations):
    z = 0
    for _ in range(num_iterations):
        z = z ** e + c
    return abs(z) <= 2


def visualize(exponent = 2, num_iterations=20) :
    plt.imshow(is_stable(c, exponent, num_iterations), cmap='plasma' )
    plt.gca().set_aspect("equal")
    plt.axis("off")
    plt.tight_layout()
    plt.show()
    
visualize(exponent=4)

Comments


Get in touch

Phone: +36 30 1378 506

Email: info@topclouders.com

​​​​​​​© 2025 Topclouders Hungary Ltd.

All Rights Reserved 

bottom of page